
A Quick Introduction to
Grammars

A language is a set of strings over some alphabet S. For a human
language like English the alphabet is the set of words of the language
and a string over this alphabet might be one valid sentence in the
language. For a programming language the alphabet is the set of
keywords, identifiers, and symbols of the language. A string of these
is in the language if it represents a valid program.

A grammar for a language is a tool for saying which strings over the
alphabet are in the language. Grammars are often used to help
determine the meaning or semantics of valid strings in the language.

Grammars are very old -- Yaska and then Panini developed grammars
for Sanskrit over 2500 years ago.

Grammars refer to two alphabets. The alphabet S for the language is
often called the alphabet of terminal symbols. Grammars have a
second alphabet G of grammar symbols, sometimes called non-
terminal symbols. Grammar symbols for English include NOUN, VERB-
PHRASE and so forth. With programming languages we usually write
terminal symbols in lower-case and grammar symbols in upper-case.

The main part of a grammar consists of a list of grammar rules. Each
rule has the form A ==> a, where A is a single grammar symbol and a
is a string that might contain both grammar symbols and terminal
symbols.

For example, one grammar rule for Scheme is
EXP ==> (if EXP EXP EXP)

That says that one form of a Scheme expression is a list (the
parentheses are part of the terminal symbols) whose first element is
the atom 'if and whose second third and fourth elements are
themselves any Scheme expressions.

To make grammars a little more compact to write out, we often write
all of the rules for a given grammar symbol on one line, with the
different right-hand sides separated by a vertical bar |. So the
grammar

E ==> E + T
E ==> T
T ==> T*F
T ==> F
F ==> number

might be more compactly written
E ==> E+T | T
T ==> T*F | F
F ==> number

A derivation with a grammar starts with one of the grammar symbols
and at each step replaces one if its remaining grammar symbols with
the right-hand side of one of the rules for that symbol. For example,
with the grammar from the previous slide

E ==> E+T | T
T ==> T*F | F
F ==> number

we might have the following derivation:

Grammar: E ==> E+T | T
T ==> T*F | F
F ==> number

Derivation. At each step I underlined the grammar symbol being
expanded for the next step

E ==> E+T
==> T+T
==> F+T
==> 3+T
==> 3+T*F
==> 3+F*F
==> 3+4*F
==> 3+4*5

We can use a tree to represent such a derivation:

E

E + T

T

F

3

T * F

F

4

5

Such a tree is called a parse tree. Note that the expression it derives
appears as a left-to-right traversal of the leaves of the parse tree.

One grammar symbol is usually designated as the start symbol and
the language derived from the grammar consists of all strings of
terminal symbols that can be derived from the start symbol in this
way.

If no start symbol is specified we usually take it to be the left-hand
side of the first grammar rule.

Here is a complete grammar for parenthesized arithmetic expressions
over the operators + - * and /:

E ==> E+T | E-T | T
T ==> T*F | T/F | F
F ==> (E) | number

We need one final piece of notation. Sometimes we need to
indicate that an element of a grammar can appear any number of
times. The notation X+ means that X can appear once, twice,
thrice or any positive number of times. The notation X* is similar,
only X can appear 0 or more times (which means it could be absent
entirely, or present any positive number of times).

Here is a full grammar for the portion of Scheme we will interpret:
EXP ==> number

| symbol
| (if EXP EXP EXP)
| (let (LET-BINDINGS) EXP)
| (lambda (PARAMS) EXP)
| (set! symbol EXP)
| (begin EXP*)
| (letrec (LET-BINDINGS) EXP
| (EXP EXP*)

LET-BINDINGS ::= LET-BINDING*
LET-BINDING ::= (symbol EXP)
PARAMS ::= symbol*

